
Adaptive control of dynamic mobile robots with
nonholonomic constraints

Farzad Pourboghrat *, Mattias P. Karlsson

Department of Electrical and Computer Engineering, Southern Illinois University, Carbondale, IL 62901-6603, USA

Received 16 November 1999; accepted 22 August 2000

Abstract

This paper presents adaptive control rules, at the dynamics level, for the nonholonomic mobile robots
with unknown dynamic parameters. Adaptive controls are derived for mobile robots, using backstepping
technique, for tracking of a reference trajectory and stabilization to a fixed posture. For the tracking
problem, the controller guarantees the asymptotic convergence of the tracking error to zero. For stabili-
zation, the problem is converted to an equivalent tracking problem, using a time varying error feedback,
before the tracking control is applied. The designed controller ensures the asymptotic zeroing of the sta-
bilization error. The proposed control laws include a velocity/acceleration limiter that prevents the robot�s
wheels from slipping. � 2002 Elsevier Science Ltd. All rights reserved.
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Adaptive control; Backstepping technique; Asymptotic stability

1. Introduction

Motion control of mobile robots has found considerable attention over the past few years.
Most of these reports have focused on the steering or trajectory generation problem at the ki-
nematics level i.e., considering the system velocities as control inputs and ignoring the mechanical
system dynamics [1–3]. Very few reports have been published on control design in the presence of
uncertainties in the dynamic model [4]. Some preliminary results on control of nonholonomic
systems with uncertainties are given in Refs. [4–6].

Two of the most important control problems concerning mobile robots are tracking of a refer-
ence trajectory and stabilization to a fixed posture. The tracking problem has received solutions
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including classical nonlinear control techniques [1,2,7]. The basic idea is to have a reference car that
generates a trajectory for themobile robot to follow. InRefs. [1,2], nonlinear velocity control inputs
were defined that made the tracking error go to zero as long as the reference car was moving. In
Ref. [7], they used input–output linearization to make a mobile platform follow a desired trajec-
tory.

The problem of stabilization about a fixed posture has been shown to be rather complicated.
This is due to violating the Brockett�s condition [8], which states that for nonholonomic systems a
single equilibrium solution cannot be asymptotically stabilized using continuous static state
feedback [9,10]. The Brockett�s condition essentially states that for nonholonomic systems an
equilibrium solution can be asymptotically stabilized only by either a time varying, a discontin-
uous, or a dynamic state feedback.

In addressing the above problem, in Ref. [10] a smooth feedback control was presented for the
kinematics control problem resulting in a globally marginally stable closed loop system. They also
designed a smooth feedback control for a dynamical state-space model resulting in a Lagrange
stable closed loop system, as defined in their paper. A two dimensional Lyapunov function was
utilized in Ref. [3] to prescribe a set of desired trajectories to navigate a mobile robot to a specified
configuration. The desired trajectory was then tracked using sliding mode control, resulting in
discontinuous control signals. The mobile robot was shown to be exponentially stable for a class
of quadratic Lyapunov functions. In Ref. [9], they formulated a reduced order state equation for a
class of nonholonomic systems. Several other researchers have later used this reduced order state
equation in their studies. In Ref. [4], the problem of controlling nonholonomic mechanical sys-
tems with uncertainties, at the dynamics level, was considered. Using the reduced state equation in
Ref. [9], they proposed an adaptive controller for a number of important nonholonomic control
problems, including stabilization of general systems to an equilibrium manifold and stabilization
of differentially flat and Caplygin systems to an equilibrium point. In Ref. [2], they gave several
examples on how the stabilization problem can be solved for a mobile robot at the kinematics
level. Their solutions included time-varying control, piecewise continuous control, and time-
varying piecewise continuous control. They also showed how a solution to the tracking problem
could be extended to work even for the stabilization problem.

Here, we present adaptive control schemes for the tracking problem and for the problem of
stabilization to a fixed posture when the dynamic model of the mobile robot contains unknown
parameters. Our work is based on, and can be seen as an extension of, the work presented in Refs.
[1,2]. Using backstepping technique we derive adaptive control laws that work even when the
model of the dynamical system contains uncertainties in the form of unknown constants. The
assumption for the uncertainty in robot�s parameters, particularly the mass, and hence the inertia,
can be justified in real applications such as in automotive manufacturing industry and warehouses,
where the robots are to move a variety of parts with different shapes and masses. In these cases, the
robot�s mass and inertia may vary up to 10% or 20%, justifying an adaptive control approach.

2. Dynamic model of mobile robot

Here, we consider a three-wheeled mobile robot moving on a horizontal plane (Fig. 1). The
mobile robot features two differentially driven rear wheels and a castor front wheel. The radius of
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the wheels is denoted r and the length of the rear wheel axis is 2l. Inputs to the system are two
torques T1 and T2, provided by two motors attached to the rear wheels.

The dynamic model for the above wheeled-mobile robot is given by Refs. [10,11].

€xx ¼ k
m sin/ þ b1u1 cos/

€yy ¼ � k
m cos/ þ b1u1 sin/

€// ¼ b2u2

8><
>: ð1Þ

_xx sin/ � _yy cos/ ¼ 0 ð2Þ

where b1 ¼ 1=ðrmÞ, b2 ¼ l=ðrIÞ, and that m and I denote the mass and the moment of inertia of the
mobile robot, respectively. Also, u1 ¼ T1 þ T2 and u2 ¼ T1 � T2 are the control inputs, and k is the
Lagrange multiplier, given by k ¼ �m _// _xxcos/ þ _yy sin/ð Þ. Here, it is assumed that b1 and b2 are
unknown constants with known signs. The assumption that the signs of b1 and b2 are known is
practical since b1 and b2 represent combinations of the robot�s mass, moment of inertia, wheel
radius, and distance between the rear wheels. Eq. (2) is the nonholonomic constraint, coming from
the assumption that the wheels do not slip. The triplet vector function q tð Þ ¼ x tð Þ; y tð Þ;/ tð Þ½ �T
denotes the trajectory (position and orientation) of the robot with respect to a fixed workspace
frame. That is, at any given time, q ¼ ½x; y;/�T describes the robot�s configuration (posture) at that
time. We assume that, at any time, the robot�s posture, q ¼ ½x; y;/�T, as well as its derivative,
_qq ¼ ½ _xx; _yy; _//�T, are available for feedback.

3. Tracking problem definition

The tracking problem consists of making the trajectory q of the mobile robot follow a reference
trajectory qr. The reference trajectory qr tð Þ ¼ xr tð Þ; yr tð Þ;/r tð Þ½ �T is generated by a reference ve-
hicle/robot whose equations are

_xxr ¼ vr cos/r

_yyr ¼ vr sin/
_//r ¼ xr

8<
: ð3Þ

Fig. 1. Mobile robot configuration.
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The subscript ‘‘r’’ stands for reference, and vr and xr are the reference translational (linear)
velocity and the reference rotational (angular) velocity, respectively. We assume that vr and xr, as
well as their derivatives are available and that they all are bounded.

Assumption A1. For the tracking problem it is assumed that the reference velocities vr and xr do
not both go to zero simultaneously. That is, it is assumed that at any time either lim t!1vr tð Þ90
and/or lim t!1xr tð Þ90.

The tracking problem, under the Assumption A1, is to find a feedback control law
u1
u2

� �
¼ u q; _qq; qr; vr;xr; _vvr; _xxrð Þ such that lim t!1~qq tð Þ ¼ 0, where ~qq tð Þ ¼ qr tð Þ � q tð Þ is defined as

the trajectory tracking error. As in Ref. [1], we define the equivalent trajectory tracking error as

e ¼ T ~qq ð4Þ

where e ¼ ½e1; e2; e3�T, and T ¼
cos/ sin/ 0
� sin/ cos/ 0

0 0 1

0
@

1
A.

Note that since T matrix is nonsingular, e is nonzero as long as ~qq 6¼ 0. Assuming that the angles
/r and / are given in the range ½�p; p�, we have the equivalent trajectory tracking error e ¼ 0 only
if q ¼ qr. The purpose of the tracking controller is to force the equivalent trajectory tracking error
e to 0. In the sequel we refer to e as the trajectory tracking error.

Using the nonholonomic constraint (2), the derivative of the trajectory tracking error given in
Eq. (4) can be written as, [1],

_ee1 ¼ e2x � vþ vr cose3
_ee2 ¼ �e1x þ vr sine3
_ee3 ¼ xr � x

8<
: ð5Þ

where v and x are the translational and rotational velocities of the mobile robot, respectively, and
are expressed as

v ¼ _xxcos/ þ _yy sin/

x ¼ _//
ð6Þ

4. Tracking controller design

Here, the goal is to design a controller to force the tracking error e ¼ ½e1; e2; e3�T to zero. Using
backstepping technique, since the actual control variables u1 and u2 do not appear in Eq. (5), we
consider variables v and x as virtual controls. Let vd and xd denote the desired virtual controls
for the mobile robot. That is, with vd and xd the trajectory tracking error e converges to
zero asymptotically. Also let us define ~vv and ~xx as virtual control errors. Then, v and x can be
written as

v ¼ vd þ ~vv

x ¼ xd þ ~xx
ð7Þ
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Let us choose the virtual controls vd and xd, as

vd vr;xr; e1; e3ð Þ ¼ vr cose3 þ k1 vr;xrð Þe1
xd vr;xr; e2; e3ð Þ ¼ xr þ k2vre2 þ k3 vr;xrð Þ sine3

ð8Þ

where k2 is a positive constant and k1ð�Þ and k3ð�Þ are bounded continuous functions with bounded
first derivatives, strictly positive on R � R-ð0; 0Þ. Observe that our approach from here on is
general for any vd and xd (with well defined first derivatives), i.e. any differentiable control law
that makes the kinematics model of the mobile robot track a desired trajectory can be used instead
of Eq. (8). Eq. (8) is similar to the control law proposed by Ref. [1], but with the advantage, as we
are going to prove later, that it can be used to track any reference trajectory as long as As-
sumption A1 holds.

Now, consider the following adaptive control scheme:

u1 ¼ b̂b1ð�c1~vvþ e1 þ _vvdÞ

u2 ¼ b̂b2

�
� c2 ~xx þ 1

k2
sine3 þ _xxd

�

_̂bb̂bb1 ¼ �c1sign b1ð Þ~vvð�c1~vvþ e1 þ _vvdÞ
_̂bb̂bb2 ¼ �c2sign b2ð Þ ~xx

�
� c2 ~xx þ 1

k2
sine3 þ _xxd

�
ð9Þ

where c1, c2, c1, and c2 are positive constants and b̂b1 is an estimate of b1 ¼ 1=b1 and b̂b2 is an
estimate of b2 ¼ 1=b2.

Result 1. If Assumption A1 holds, then the adaptive control scheme (9) makes the origin e ¼ 0
uniformly asymptotically stable.

Proof. Consider the following Lyapunov function candidate

V1 ¼
1

2
e21
�

þ e22
�
þ 1

k2
1ð � cose3Þ ð10Þ

where k2 is a positive constant. Clearly V1 is positive definite and V1 ¼ 0 only if e ¼ 0.
Taking the time derivative of V1, we obtain

_VV1 ¼ e1ð � vþ vr cose3Þ þ e2vr sine3 þ
1

k2
sine3 xrð � xÞ ð11Þ

Furthermore, using Eqs. (7) and (8), we have

_VV1 ¼ �k1e21 �
k3
k2

sin2e3 � ~vve1 � ~xx
1

k2
sine3 ð12Þ

In view of Eqs. (1), (2) and (6), we find the time derivatives of ~vv and ~xx, as

_~vv~vv ¼ _vv� _vvd ¼ €xxcos/ � _xx sin/ _// þ €yy sin/ þ _yy cos/ _// � _vvd ¼ b1u1 � _vvd
_~xx~xx ¼ _xx � _xxd ¼ €// � _xxd ¼ b2u2 � _xxd

ð13Þ
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Consider the Lyapunov function candidate

V2 ¼ V1 þ
1

2
ð~vv2 þ ~xx2Þ þ b1j j

2c1
~bb2
1 þ

b2j j
2c2

~bb2
2 ð14Þ

where ~bb1 ¼ b1 � b̂b1 ¼ 1=b1 � b̂b1 and
~bb2 ¼ b2 � b̂b2 ¼ 1=b2 � b̂b2. Considering Eq. (9) we get:

_VV2 ¼ �k1e21 �
k3
k2

sin2e3 � c1~vv2 � c2 ~xx2
6 0 ð15Þ

Since V2 is bounded from below and _VV2 is negative semi-definite, V2 converges to a finite limit.
Also, V2, as well as, e1, e2, e3, ~vv, ~xx, b̂b1, and b̂b2 are all bounded.

Furthermore, using Eqs. (5), (7)–(9) and (13), the second derivative of V2 can be written as

€VV2 ¼ �2k1e1e2ðxr þ k2vre2 þ k3 sine3 þ ~xxÞ þ 2k1e1ðk1e1 þ ~vvÞ � _kk1e21

þ 2k3
k2

cose3 sine3ðk2vre2 þ k3 sine3 þ ~xxÞ �
_kk3
k2

sin2e3 � 2c1~vvðb1b̂b1ð�c1~vvþ e1 þ _vvdÞ � _vvdÞ

� 2c2 ~xx b2b̂b2

��
� c2 ~xx þ 1

k2
sine3 þ _xxd

�
� _xxd

�
ð16Þ

which from the properties of k1, k2, and k3, the assumption that vr and xr and their derivatives are
bounded, and from the above results, can be shown to be bounded, i.e., _VV2 is uniformly contin-
uous. Since V2ðtÞ is differentiable and converges to some constant value and that €VV2 is bounded, by
Barbalat�s lemma, _VV2 tð Þ ! 0 as t ! 1. This in turn implies that e1, e3, ~vv, and ~xx converge to zero
[12,13]. To show that e2 also goes to zero, note that, using the above results, the first error
equation can be written as

_ee1 ¼ e2xr � k1e1 ð17Þ
The second derivative of e1 is

€ee1 ¼ _xxre2 þ xrð � e1x þ vr sine3Þ � k1 e2xrð � k1e1Þ � _kk1e1 ð18Þ
which can be shown to be bounded by once again using the properties of k1, the assumptions on vr
and xr, and Eqs. (7) and (8). Since e1 is differentiable and converges to zero and €ee1 is bounded, by
Barbalat�s lemma, _ee1, and hence, e2xr tend to zero. Proceeding in the same manner, the third error
equation can be written as

_ee3 ¼ �k2vre2 � k3 sine3 ð19Þ
and its second derivative can be shown to be bounded. Since e3 is differentiable and converges to
zero and €ee3 is bounded, again by Barbalat�s lemma, _ee3 ! 0 as t ! 1. Hence, k2vre2 and thus vre2
tend to zero as t ! 1. Clearly, both vre2 and xre2 converge to zero. However, since vr and xr do
not both tend to zero (by Assumption A1), e2 must converge to zero. That is, e1, e2, e3, ~vv, and ~xx
must all converge to zero. h

In Section 3, we demonstrated that the system is stable if k2 is a positive constant, and that k1ð�Þ
and k3ð�Þ are bounded continuous functions with bounded first derivatives and are strictly positive
on R � R-ð0; 0Þ. To get a better understanding on how the control gains affect the response of the
system, we write the equations for the closed loop system when ~vv and ~xx are equal to zero as [1]
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_ee ¼
�k1e1 þ xr þ k2vre2 þ k3 sine3ð Þe2

� xr þ k2vre2 þ k3 sine3ð Þe1 þ vr sine3
�k2vre2 � k3 sine3

0
@

1
A ð20Þ

By linearizing the differential equation (20) around e ¼ 0, we get

_ee ¼ Ae ð21Þ

where

A ¼
�k1 xr 0
�xr 0 vr
0 �k2vr �k3

0
@

1
A ð22Þ

To simplify the analysis, we assume that vr and xr are constants. The system�s closed loop poles
are now equal to the roots of the following characteristic polynomial equation:

sð þ 2nx0Þ s2
�

þ 2nx0sþ x2
0

�
ð23Þ

where n and x0 are positive real numbers. The corresponding control gains are

k1 ¼ 2nx0

k2 ¼
x2

0 � x2
r

v2r
k3 ¼ 2nx0

ð24Þ

With a fixed pole placement strategy (n and x0 are constant), the control gain k2 increases
without bound when vr tends to zero. One way to avoid this is by letting the closed loop poles
depend on the values of vr and xr. As in Ref. [2], we choose x0 ¼ x2

r þ bv2r
� �ð1=2Þ

with b > 0. The
control gains then become

k1 ¼ 2n x2
r

�
þ bv2r

�1=2
k2 ¼ b

k3 ¼ 2n x2
r

�
þ bv2r

�1=2 ð25Þ

and the resulting control is now defined for any values of vr and xr.
In the above, it is shown that the proposed algorithm works for any desired velocities, ðvd;xdÞ.

However, in practice, if the tracking errors initially are large or if the reference trajectory does not
have a continuous curvature (e.g., if the reference trajectory is a straight line connected to a circle
segment), either or both of the virtual reference velocities in Eq. (8) might become too large for a
real robot to attain in practice. Hence, the translational/rotational acceleration might become too
large causing the robot to slip [1]. In order to prevent the mobile robot from slipping, in a real
application, a simple velocity/acceleration limiter may be implemented [1], as shown in Fig. 2. This
limits the virtual reference velocities ðvd;xdÞ by constants ðvmax;xmaxÞ and the virtual reference
accelerations ða; aÞ by constants ðamax; amaxÞ, where a ¼ _vvd and a ¼ _xxd are the virtual reference
accelerations. In practice, these parameters must be determined experimentally as the largest
values with which the mobile robot never slips.
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An important advantage of adding the limiter is that it lowers the control gains indirectly only
when the tracking errors are large, i.e., when too high a gain could cause the robot to slip, while
for small tracking errors it does not affect the performance at all. Thus, by using the limiter one
can have higher control gains for small tracking errors to allow for better tracking, while letting
the limiter to ‘‘scale down’’ the gains, indirectly, for large tracking errors, to prevent the robot
from slipping.

5. Simulation results for tracking control problem

Here, the results of computer simulation, using MATLAB/SIMULINK, are presented for a mobile
robot with the proposed tracking control and with the velocity/acceleration limiter. The computer
simulations for the above controller without the limiter, although not shown here, produce similar
results, but with somewhat different transient characteristics. All simulations have the common
parameters of c1 ¼ c2 ¼ 100, c1 ¼ c2 ¼ 10 and b ¼ 250. Also selected are, the damping factor n ¼
1, vmax ¼ 1:5 m/s, xmax ¼ 3 rad/s, amax ¼ 5 m/s2 and amax ¼ 25 rad/s2. Moreover, the robot�s dy-
namic parameters are chosen as b1 ¼ b2 ¼ 0:5, which are assumed to be unknown to the con-
troller, but with known signs.

Simulation results for the case where the reference trajectory is a straight line are shown in Figs.
3 and 4 for t 2 ½0; 10�. The reference trajectory is given by xrðtÞ ¼ 0:5t, yrðtÞ ¼ 0:5t and /rðtÞ ¼ p=4,
defining a straight line, starting from qrð0Þ ¼ ½xrð0Þ; yrð0Þ;/rð0Þ�

T ¼ ½0; 0;p=4�T. The mobile robot,

however, is initially at qð0Þ ¼ ½xð0Þ; yð0Þ;/ð0Þ�T ¼ ½1; 0; 0�T, where / ¼ 0 indicates that the robot is
heading toward positive direction of x.

As it can be seen from these figures, first the robot backs up and then heads toward the virtual
reference robot moving on the straight line. Figs. 5 and 6 show the simulation results for tracking
a circular trajectory. The reference trajectory is a point moving counter clockwise on a circle of
radius 1, starting at qrð0Þ ¼ ½xrð0Þ; yrð0Þ;/rð0Þ�

T ¼ ½1; 0; p=2�T. The reference velocity is kept
constant at vrðtÞ ¼ 0:5 m/s. The initial conditions for the mobile robot, however, is taken as
qð0Þ ¼ ½xð0Þ; yð0Þ;/ð0Þ�T ¼ ½0; 0; 0�T.

Again, as it is seen from these figures, the robot immediately heads toward the reference robot,
which is moving on the circle. It then reaches it quickly and continues to track it.

Fig. 2. Tracking control structure.
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6. Stabilization problem definition

The stabilization problem, given an arbitrary desired posture qd, is to find a feedback control

law,
u1
u2

� �
¼ u q� qd; _qq; tð Þ, such that lim t!1 q tð Þ � qdð Þ ¼ 0, for any arbitrary initial robot

posture qð0Þ. Without loss of generality, we may take qd ¼ ½0; 0; 0�T.

Fig. 3. Mobile robot and reference trajectories in the ðx; yÞ plane.

Fig. 4. Time history of the tracking errors.
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6.1. Stabilization controller design

Recall that there is no continuous static state feedback that can asymptotically stabilize a
nonholonomic system about a fixed posture [8–10]. The approach to the problem taken here is the
dynamic extension of that in Ref. [2] where a kinematics model of the mobile robot is used. In-
stead of designing a new controller for the stabilization problem the same controller as for the
tracking problem is used. The idea is to let the reference vehicle move along a path that passes
through the point ðxd; ydÞ with heading angle /d. The stabilization to a fixed posture problem is

Fig. 6. Time history of the tracking errors.

Fig. 5. Simulation results when the reference trajectory describes a circle.
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now equivalent to, and can be treated as, a tracking problem (convergence of the tracking errors
to zero) with the additional requirement that the reference vehicle should itself be asymptotically
stabilized about the desired posture. As in Ref. [2], we let the reference vehicle move along the x-
axis, i.e. yrðtÞ ¼ 0 and /rðtÞ ¼ 0, for all values on t. The design method is the same as derived for
the tracking case. However, in this case

vr ¼ _xxr ¼ �k4xr þ gðe; tÞ; ð26Þ

with

gðe; tÞ ¼ kek sin t ð27Þ

where k4 > 0. Different time-varying functions gðe; tÞ have also been suggested in the literature, see
Refs. [2,11] and the references therein.

Since, from the Section 5, the tracking errors e1, e2, and e3 are bounded, the time-varying
function gðe; tÞ is bounded. Therefore vr and the state xr also remain bounded. By taking the time
derivative of Eq. (26), it can be shown in the same way that _vvr is bounded. Since vr and _vvr are
bounded, the assumptions made in Section 3 concerning the reference velocity are fulfilled. If vr is
not equal to zero, then e must converge to zero. When e tends to zero, gðe; tÞ also tends to zero.
Therefore, the robot�s position xmust track xr, which converges to zero and hence lead the mobile
robot to the desired posture.

6.2. Simulation results for stabilization control problem

Here, the simulation results for the stabilization problem are shown in Figs. 7 and 8. The
control parameters and system parameters are the same as for the simulations shown for the
tracking problem and k4 ¼ 1. The mobile robot is initially at qð0Þ ¼ ½xð0Þ; yð0Þ;/ð0Þ�T ¼ ½0; 1; 0�T.

Fig. 7. Mobile robot�s trajectory in posture stabilization simulation.
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As it is seen from the figures, the stabilization about the final posture at the origin is achieved
quite satisfactorily. Note, in this case, that the robot actually turns around and backs up into the
final posture.

7. Conclusions

Two important control problems concerning mobile robots with unknown dynamic parameters
have been considered, namely, tracking of a reference trajectory and stabilization to a fixed
posture. An adaptive control law has been proposed for the tracking problem and has been ex-
tended for the stabilization problem. A simple velocity/acceleration limiter was added to the
controller, for practical applications, to avoid any slippage of the robot�s wheels, and to improve
the tracking performance. Several simulation results have been included to demonstrate the
performance of the proposed adaptive control law.
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