
Fachhochschule Esslingen, Hochschule für Technik,

Standort Göppingen, Fachbereich Mechatronik, PDV

Université Toulon-Var, institut universitaire de technologie,
gestion électronique et informatique industrielle

Development of software, electronics and conceptions for a
mobile robot

SS 2002: 11. Februar bis 19. Juli

Maximilian Heise, Mat. Nr. 721160

Betreuer FHTE:

Prof. Dr.-Ing. Klaus Harig

Betreuer Université Toulon-Var:

Prof. Philippe Arlotto, GEII

Prof. Didier Colas, Chef du Pôle Cultur

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 2 -

1 Table of Contents:

1 Table of Contents: 2

2 Introduction 4

2.1 Principal goal 4

2.2 The mobile robots hardware 4

2.3 Rules of the competition 4

2.4 Université Toulon-Var, IUT, GEII 5

2.5 Working Environment 6

3 First steps with a PIC16F84 on a prototype board 7

3.1 Programming asm on RISC architectures 7

3.2 The first program 8

4 PIC16F628 on a prototype board 9

5 Generating two PWM signals on a PIC16F877 10

5.1 FSR and INDF registers 10

5.2 ADC conversion on the PIC16F877 10

6 Motor electronics, H-bridge and PWM operation 13

6.1 H-Bridge Operation 13

6.2 PWM signal generation 16

7 Working with Proteus, Isis and Ares 18

7.1 Isis 18

7.2 Ares 19

8 Microchip IDE Mplab, PIC C compiler from Hi-Tech 20

8.1 Problems with Mplab and the ICD 20

8.2 Problems with HiTech’s PIC C compiler PICC 23

8.3 Using the PICC 24

9 ICD and ICD interface 25

10 The robot crusing around 27

10.1 Pictures of the robot following the scotch tape 27

10.2 Quadrature Encoder Input 28

10.3 Speed and position control 30

10.4 Encoder signal circuit 31

11 Serial port on the PIC 16F877 33

11.1 The serial interface circuit 33

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 3 -

12 Schematic of the main board, PIC16F877, 2x PWM signals 34

12.1 The main board, photo and description 34

12.2 Schematics of the circuit of the main board 35

12.3 OPB704 light sensors 37

12.4 The battery 38

13 I2C bus of the pic 16F877 39

13.1 The I2C bus 39

13.2 The compass and ultrasound distance sensor 39

14 Conclusion 40

15 References 41

16 Index of tables and pictures 42

17 Annex 43

17.1 Resistors 43

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 4 -

2 Introduction

2.1 Principal goal

The principal goal of this project is to develop strategies and first solutions for

an autonomous mobile robot which will be participating in a competition

between IUTs of different French universities.

2.2 The mobile robots hardware

The hardware, that is the chassis, the motors, the wheels and the battery are

standardized to make the competition not a mechanical one but a competition

of software and electronics.

For more information see [1, rules.pdf]

2.3 Rules of the competition

To robots must complete a course looking similar to the one in Picture 2-1.

Picture 2-1, the course for the competition

For more information see [2, Base_roulante.pdf].

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 5 -

2.4 Université Toulon-Var, IUT, GEII

The university of Toulon is situated east of Toulon in a suburb called La Garde

which lies between Mont Coudon to the Nord, the sea and another smaller

community called Le Pradet to the south. The next town to the west is Hyères,

a beautiful town which is in general friendlier than Toulon, which is not typical

for the French Côte d’Azur because of its large military port and arsenal.

What is very practical is that everything a student living on campus needs is

within 10min walk.

Picture 2-2, Université Toulon-Var, east side

Picture 2-3, Toulon Picture 2-4, La Garde

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 6 -

2.5 Working Environment

The project documentation in general is written in English as the most common

denominator, to be accessible to the staff and students in Toulon as well as

back in Germany. Most of the supplied documents describing the robot are in

French, therefore some effort was made to extract some essential information

to be explained here. External documentation of different ICs, like the

Microchip's PIC midrange family, is in English.

Most of the manuals are in Adobe PDF format.

For designing electronics (schematics and layout) the French version of

Proteus 5.2. was used. For developing the software Microchip's MpLab in

combination with Hi-Tech's PIC c compiler PICC together XEmacs as editor

were used.

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 7 -

3 First steps with a PIC16F84 on a prototype board

At first, some practice was needed to get accustomed with Microchip’s free IDE

Mplab, the eepromer and the pic family in general.

3.1 Programming asm on RISC architectures

Professor Arlotto first had to explain the RISC (Reduced Instruction Code)

way to program in assembler. The RISC philosophy is that you do not have a

lot of different special assembler commands, e.g. Intel x86 "JNZ", "jump if zero

flag not set" or "JNC", "jump if carry flag not set", but a small number of multi-

purpose commands. In addition to that, instructions are optimised so that they

all take the same amount of time to execute (1µs for normal and 2µs for

branches on the PIC16F84 and PIC16F877 at 4MHz). RISC makes it easier for

the programmer to program in assembler.

So "JNZ" becomes btfss STATUS, 2 on the PIC midrange family.

btfss STATUS, 2 (or btfss 0x03, 2 as STATUS is only a symbolic name for

address 0x03) stands for bit test file skip set. btfss skips the next instruction if

the specified bit is set. btfsc, bit test file skip clear is available, too. For more

informations see [3, PIC16F84a.pdf manual, p. 57]

As a result there are only 35 single instructions to learn to program the

PIC16F84 or PIC16F877, respectively.

The PIC16F8X manual is available at Microchip's web site at [4,

http://www.microchip.com].

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 8 -

3.2 The first program

This first program is flashing a LED with 0.5ms off and 1ms on if a press button

connected to and input is pressed.

Picture 3-1, 16F84 on a prototype board

This little more than cut 'n paste from a project of Professor Arlotto.

Understanding and verifying it was a good way to get to know the PIC's

assembler better ([6, ex001.asm]). Because the press button acts as a pull-

down a 0V at the input signifies that the button is pressed.

The second program was still simple ([7, ex002.asm]) , and does nothing more

then switching a led on if you press a button and switching it back off when the

button is not pressed.

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 9 -

4 PIC16F628 on a prototype board

Once more familiar with the small PIC, the next circuit with a PIC16F628 was

built to begin generating PWM signals. At the beginning, two fixed relations

between the PWM period and the duty cycle were used, which were chosen by

pressing or releasing a button. Later on a poti was used to read an analog

value, which was scaled to the 8 bits the PWM module is offering in the MSB

register. This was then used to generate a variable PWM duty cycle.

For a PWM explanation see 16.2 PWM signal generation

See the Picture 4-1 to get an idea.

Picture 4-1, showing a prototype with a 16F628

See the source, [8, pwm001.asm] to see the functionality of this prototype.

For more information on the PIC16F62X see [4, PIC16F62X manual]

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 10 -

5 Generating two PWM signals on a PIC16F877

Once the PWM generation was working for one channel, the project was

transferred to the PIC16F877, which is offering two PWM modules.

For a detailed list of the feature of the 16F87X family see [9, PIC16F87X

manual]

5.1 FSR and INDF registers

When programming in assembler the indirect addressing feature of the PIC µC

family is very practical. By writing an address to register FSR (file select

register) reading and writing register INDF addresses the register pointed to by

FSR. For more information see [9, p. 26].

Indirect addressing example

movlw 0x20 ;initialize pointer

movwf FSR ;to RAM

NEXT

clrf INDF ;clear INDF register

incf FSR ;inc pointer

btfss FSR,4 ;all done?

goto NEXT ;no clear next

 ;yes continue

I used the FSR feature here to toggle between the two ADC and PWM

channels I used in this project. See the asm function togglePWMChannel for

details.

The source is again available at [9, pwm_f877.asm

5.2 ADC conversion on the PIC16F877

The 16F877 has 8 multi-channel 10 bit ADCs (Analog to Digital Converters)

with sample and hold and configurable high and low voltage

reference.

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 11 -

Picture 5-1, AD block diagram on the PIC16F87X

As it can be seen in Picture 5-1, only one AD conversion can be done at one

time, it is not possible to do several AD conversions at one time.

If there are no more spare pins left on the µC, some pins can economized by

using all but one AD pins as GPIO and connecting the AD sources to a

address decoder which is in turn connected to the last pin configured for AD.

In such a way, with this 8 pins on the AD module, it is possible to have 25=32

separate AD inputs with high and low voltage reference, or have 23=8 AD

inputs with high and low voltage reference and 2 more pins free.

Note that the RA4/T0CKI pin, which lies between the other pins of port A,

which is shared with the ADC module, is an open drain output and Schmitt

trigger input.

Note again that the port A pins are configured as AD input, therefore a more

special initialization sequence is needed, see [9, PIC16F87X manual, p. 29] for

more information.

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 12 -

Picture 5-2, PIC16F877 generating first dual pwm signals

Examples of how to use and configure the AD module can be found in ad.c

and ad.h or [10, pwm_f877.asm].

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 13 -

6 Motor electronics, H-bridge and PWM operation

The two motor electronic boards have inputs for ground and +12V (2 pin

connector on the upper left corner), inputs for signals from the microcontroller,

ENABLE, IN1 and IN2 (3 pin connector on the lower right side corner) and

outputs to the motor (2 pin connector in the middle of lower side).

Picture 6-1, motor electronics, top view

6.1 H-Bridge Operation

Because the motor can not be driven directly by the current supplied by the µC,

a special circuit is needed to get the energy for the motor’s operation from a

separate power source.

While this circuit can be build by different parts like relays, bipolar transistors,

power MOSFETs or specials ICs the schema of this circuit always stays the

same.

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 14 -

Picture 6-2, motor electronics, bottom view

A H-Bridge always consists of four switches which form the sides of the letter H

and the connectors for the motor which form the middle of the H.

The switches are opened and closed in such a way so that a voltage in a

certain direction drives the motor left or right.

If the switches S1 and S4 are open while S2 and S3 are closed the motor turns

to one direction and if S2 and S3 are open while S1 and S4 are closed the

motor turns to the other direction.

The motor will turn without any resistance if all switches are closed, and will

brake if S1 and S3 are closed and S2 and S4 are opened or vice versa.

Enable, IN1 and IN2 are signals from the µC needed to drive the switches S1,

S2, S3 and S4.

The table 4-4 demonstrates the different possibilities of the signal and the

resulting behaviour of the motor.

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 15 -

Picture 6-3, schematic of the h-bridge and the µC inputs necessary

Enable IN1 IN2 S1 S2 S3 S4 Motor

1 0 1 1 0 0 1 Turns right

1 1 0 0 1 1 0 Turns left

0 X X 0 0 0 0 No

resistance

1 0 0 1 0 1 0 Brakes

1 1 1 0 1 0 1 Brakes

Table 6-1, all possibilities of signals for the h-bridge, X -> don’t care

Voltage-
source

S1

S2

S3

S4

Motor

Enable

IN2IN1

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 16 -

Picture 6-4, schematic of the motor electronics board

6.2 PWM signal generation

A PWM signal is generated by using switches IN1 and IN2 (or S1 to S4) in

such a way, so that different voltage averages between 0V and Vmax are

generated.

In practice, this is achieved by connecting Enable and one IN signal to GPIO (

general purpose i/o) pins and connecting the other IN signal to a PWM unit (

or CAPCOM capture compare unit which can be used to generate a PWM

signal) on the µC.

Care has to be taken that the PWM signal’s frequency does not exceed the

maximal input frequency of the parts or IC used or the signal will just be full

speed.

One should note that frequencies between 20 and 15 to 20kHz may result in

vibrations that can hearted by the human ear.

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 17 -

Picture 6-5, pwm signal explanation, voltage at the motor electronics inputs

PWM signal relation =
period

on

t
t

A special IC was used in this project, a SGS-Thomson L6203. For further

information please consult this IC’s documentation [11, SGS-Thomson L6203

manual].

t

V

t

V

t

V

Average voltage
Tperiod

ton

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 18 -

7 Working with Proteus, Isis and Ares

Proteus, which it’s two parts ISIS (used for electronic schematics) and ARES (

Advanced Routage and Editing Software) is used for the development of

electronic circuits.

7.1 Isis

Picture 7-1, ISIS screenshot

Usage of Isis is not easy to learn at first, especially if you have never before

worked with a electronic CAD. The French language version with its own

electronic terms did not make things easier.

The settings are not always were the user expects them to find, the program is

not really user friendly.

Nevertheless, after some work done the logic of this program becomes better

and when used together with its companion Ares one gets accustomed to it.

Once the circuit is developed in Isis, it can be processed in Ares for the

routage and layout.

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 19 -

Isis helps the user in creating the schematic by supplying a large library of

electronic parts. Even µCs are included.

Once the schematic is ready the user can simulate the circuit and test for

errors if pins were correctly declared during the design phase.

Pin can be assigned to Input, Output, I/0, Power etc. to that connections can

be tested if they are possible or if they will make some parts disappear in a

cloud of smoke.

7.2 Ares

Picture 7-2, Ares screenshot

Ares usually has a black background, but for printing purposes this was

changed here

As stated before, the similarities between ARES and ISIS are obvious. Like

ISIS, ARES comes with part libraries

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 20 -

8 Microchip IDE Mplab, PIC C compiler from Hi-Tech

8.1 Problems with Mplab and the ICD

Mplab is the IDE supplied for free by Microchip, the manufacturer of the PIC

family of µPs and µCs.

While this development tool is very well suited for programming assembler and

writing the object code to a µC with a eeprom writer, the integration of the

HiTech PIC C compiler C (which is available for the small 16F84 for free for

non-commercial development and evaluation), the debugging tool ICD (In

Circuit Debugger) and the serial programming by the ICD is sometimes tricky.

Maybe newer versions of Mplab will improve this situation.

There are a few things (gotchas) to consider when using Mplab:

The update to V5.61 from V5.5 of Mplab removed the bug that the IDE always

lost all information about the ICD when ever the node configuration was

opened, which was really annoying. Today Mplab V5.70 is available, upgrading

is highly recommended.

Other annoying things are that file names can only be 8 characters long

because Mplab is still a 16bit Windows application. But that will change when

V6.0 of Mplab will be released.

There is no syntax highlighting available, so a stray comment in a source file

can silently comment out the rest of your source.

It may happen that the IDE will not ask you to save your edited source file on

exiting the program. So saving your files before exiting is highly recommened,

especially if you do not want a whole day’s work to vanish in an instant.

The ICD window is always visible if you use the ICD in your project, it can not

be closed which takes precious space on your screen that is needed if several

watch, trace, option and edit windows are open during development.

Reseting the µC via the Mplab IDE and the ICD is only working if the chip has

been programmed in "Enable Debug Mode".

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 21 -

Picture 8-1, ICD’s main and option window

The following options were set in the node options dialog

Informational messages: Verbose

Warning level: On 3

Generate debug info: On

Assembler Optimizations: On

Global Optimizations: On 3

Include Search path: On CD

Error file: On

Produce assembler list file: On <-- This is needed for debugging of c code in

Mplab

Compile for MPLAB-ICD: On

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 22 -

Strip local symbols: On

Picture 8-2, node options dialog

Picture 8-3, Mplab’s main window

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 23 -

8.2 Problems with HiTech’s PIC C compiler PICC

There is no feature to detect code that is not reached (dead code), but one

can use lint to check for such errors.

The integration of the HiTech PIC C compiler can be improved if the following

things are done, these tips are taken from HiTech’s web site [4,

http://www.microchip.com], but parts of this information can also be found the

the PICC manual [12, PICC-manual.pdf].

Error messages can not be used to jump to the error’s location

Q: When I compile a PIC program using MPLAB, the error messages from

PICC appear the in MPLAB build results window, but if I double click on the

message, MPLAB doesn't jump to the error location. How do I fix this?

A: The default error format from PICC is not what MPLAB wants. You can alter

this by setting some environment variables. These are:

HTC_ERR_FORMAT=Error[000] %f %l : %s

HTC_WARN_FORMAT=Warning[000] %f %l : %s

How to get MPLAB to display compile errors

Q: When I compile an MPLAB project, I get the message: "MPLAB is unable to

find output file "XXXX.OBJ". This may be due to a compile, assemble, or link

process failure. Build failed.", but no errors are displayed. How do I know what

is producing the error?

A: MPLAB displays any errors after it attempts to compile. These messages

are read from error files that the compiler must produce. You need to turn on

the "Error file" option for each source node in the project and the HEX link

node. In the data field for this option enter the name of the source file with the

extension ".err". So if you have a source file called "main.c", then in the node

properties for the node, you should specify an error file of main.err. If the HEX

node has the same name as one of the source modules, then turn on the

"Append Errors to file" option and enter the error file as indicated above.

Local variables in MPLAB

Q: How do I view local variables in MPLAB?

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 24 -

A: To be able to view local varibles in MPLAB, be sure to compile your project

with the option "Generate Debug Info" for each node. Also add to the HEX file

node the additional command line option –FAKELOCAL. Local variables will

then be seen in the format: function_name.local_var So for example, if you had

a local variable called "number" and it was within a function called "testing",

then it would appear in the symbol list as "testing.number"

Note that from experience, if setting –FAKELOCAL will not help, then a restart

of MPLAB may help in these situations.

Incremental Compiles with Hi-Tech C

Q: Under Hi-Tech C and MPLab, every time I recompile, it recompiles

everything and then links it. How do I do incremental compiles?

A. Add the line 'c:\ht-pic\include' under 'include path' in the 'edit project'

dialogue to enable incremental compiles. You must already have the 'language

tool' under the root node set to 'PIC C Linker', not 'PIC C compiler'. Add each

source file to the list to be compiled and then linked.

8.3 Using the PICC

The PICC is a full featured ANSI C compiler without support for recursive

functions. But these are not really needed with only 8 stack levels (only 7

when the ICD debugs the µC) and limited memory.

Once the PIC Compiler, Linker and assembler are installed using edit->install

language tool, the compiler and linker can be used in the node options.

Picture 8-4, language installation tool

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 25 -

9 ICD and ICD interface

The ICD (In Circuit Debugger) is a tool which can be used for limited

debugging of the PIC 16F877. In normal use, and when used with common

sense, its capabilities are more then enough for most uses.

Picture 9-1, the DB9 connector is the ICD interface

Its features and tradeoffs are:

- In circuit debugging which one breakpoint, one trace and watch

windows for variables and a complete memory map if needed.

- Source level (even works with C code) in asm or object code

debugging.

- In circuit serial programming, no need to remove the µC from its socket

for programming any more.

- RS-232 interface, but it sometimes does not work with USB serial

converters !

- You lose 3 pins on port B (bad because 2 of them have interrupt on

change options). These are RB3, RB6 and RB7

- You lose one stack level

- You lose memory from 0x1F00 to 0x1FFF as well as 6 general purpose

file registers on the µC.

- Sometimes, if you built your own (longer) cable to your own circuit,

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 26 -

transmit errors will occur, therefore always verify the code downloaded

to the µC before trying to debug and go hunting for bugs. As shielded

cable is therefore the best solution if the cable length exceeds 200mm

or if you use speeds > 19,2kBaud.

-

Alternatively there is also the option to use the ICD2, with more features, which

is will support the 16F877 in the near future with Mplab V6.

Connection to the ICD module is done by a self-fabricated cable.:

DB9 on own target board RJ11 ICD module

Color PIN Signal Color PIN Signal

white 1 VPP white 1 VPP

green 2 RB7 black 2 VDD +12V

yellow 3 RB6 red 3 GND

blue 4 RB3 green 4 RB7

NC 5 NC yellow 5 RB6

red 6 GND blue 6 RB3

black 7 VDD +12V NC NC NC

NC 8 NC NC NC NC

NC 9 NC NC NC NC

Table 9-1, pinout of the ICD connection cable

For more information consult the ICD documentation [13, ICD.pdf] and [14,

ICD-setup-poster.pdf]

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 27 -

10 The robot crusing around

10.1 Pictures of the robot following the scotch tape

Picture 10-1, the robot on its course

Picture 10-2, close view of the robot cruising

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 28 -

10.2 Quadrature Encoder Input

With one flexible disc containing white and black areas attached to each motor.

And with two sensors consisting of of a photodiode and a phototransistor a

quadrature encoder can be build for each motor which makes it possible to

detect and measure speed and direction.

Picture 10-3, motor with

encoder discs

Picture 10-4, the encoder

disc

Picture 10-5,

schematic of H21B

Due to the limited number of pins on the 16F877, a software solution was tried

here by connecting signal A of each encoder to to GPIO pin with an interrupt

on change feature thus making it possible to process the change of speed and

the sense of direction in the interrupt service routine. However, this is

suboptimal as the following calculation shows.

Speed Vmax of the robot: Vmax= 2 m/s

Encoder disc has 30 black and white areas: nencoder = 30

Circumference of one wheel: uwheel = 1/6 m

Two wheels nwheel = 2

Worst case for the time tnextEncoderInterrupt after which the next encoder interrupt

must be processed.

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 29 -

ms
vnn

u
t

wheelencoder

wheel
rInterruptnextEncode 38,1

** max

==

Formula 10-1

This calculation implies that the encoder signals have a exact phase shift of

90°! If this is not the case, e.g. if the phase shift is only 60°, the time

tnextEncoderInterrupt is only 1,38ms*2/3=0,92ms !

With the µC at f = 4MHz one instruction cycle takes

ssetperiod µ14*610*25,0 =−=

Formula 10-2

Because one instruction cycle takes four Q cycles [15, PIC midrange MCU

family, midrange.pdf]

So the number of instructions nisr in the ISR (interrupt service routine)

processing the encoder interrupt may not exceed:

1380==
period

rInterruptnextEncode
isr t

t
n

Formula 10-3

While this seems a lot a first, one must consider that the µC must still process

routines for PWM generation, timer event, adc operation and other sensors. If

one interrupt it lost because the µC is processing another interrupt and the GIE

is disabled, an encoder signal will be silently discarded and the change in

position or speed will no be noted.

The correct solution would be to use a dedicated µC or IC for encoder data

processing. This solution is, however, not feasible on the 16F87X because this

µC does not have an external bus to address external memory. Maybe the I2C

bus could be used. Commercial products use special hardware that usually

looks similar to Picture 10-6, for more information on encoders see [16,

servotogo, servo i/o card hardware manual].

If the 20MHz version of the PIC16F877 would be used, this calculation might

look 5 times better, so the software approach might be possible then.

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 30 -

Picture 10-6, commercial encoders

Picture 10-7, signal examples

10.3 Speed and position control

Using the encoder as outlined in 10.2 Quadrature Encoder Input gives the

speed and direction of the robot with twice the resolution one encoder can

Preset Register (PR) Counter (CNTR)

Output Latch (OL)

Encoder Signals

µC

t

V
ol

ta
ge

A before B => backward
t

V
ol

ta
ge

A after B => forward

t

V
ol

ta
ge

A after B, change, A before B, change, A after B, change, A before B, …

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 31 -

provide. The resolution is only twice and not four times higher as normal

because of the limited number of pins with interrupt on change feature, only

one signal of a encoder, lets say A, can be connected to such a pin. The other

must be connected to a normal input.

Position control as such is not possible using this configuration if no integrator

is used to integrate the speed information thus gaining position. However this

approach might be too costly in terms of cycles on a 8 bit µC. And to have an

appropriate distance before the counter overflows, two registers must be

cascaded.

With nwheel and uwheel as well as the information that resolution is doubled the

resolution 1/360m. With an 8 bit counter the register will overflow after roughly

710mm. With two cascaded 8 bit counters the register will overflow after 182m.

10.4 Encoder signal circuit

With the supplied optical switch H21B [Picture 10-5, schematic of H21B] an

encoder circuit can be build, note that 4 of these circuits are needed (2 wheels

with to sensors each).

Picture 10-8, encoder circuit schematics

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 32 -

The LED on top of the circuit can be removed if not indicator is needed.

C1, R4 and Q1 amplify the signal from the H21B, the capacity’s charge is

sufficient to maintain logic TTL levels up to very low speeds. When the

capacity is empty the TTL level will drop to ~4V which should still be sufficient

to hold high level.

Signal edge Signal state Direction
A high->low B low forward
A low->high B high forward
B high->low A high forward
B low->high A low forward
A high->low B high backward
A low->high B low backward
B high->low A low backward
B low->high A high backward

Table 10-1, signal states

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 33 -

11 Serial port on the PIC 16F877

11.1 The serial interface circuit

Because the serial port on the PIC16F877 can not supply the necessary

voltage level of 12V for RS232 operation, a special IC is required.

A IC of the industrial standard family of MAX, the MAX233 is used here

because of its ease of use. The MAX233 only needs one capacity on the

periphery. The MAX233 features two serial ports, but only one is used here.

Picture 11-1, schematic of serial port circuit

The first connector on the upper left is used to connect the pins RC6/TX and

RC7/RX from the µC. The second connector on the upper middle connects to

the host PC. The third connector on the upper right connects to +5V and GND.

For more information see the MAX233 documentation at [17, MAX220-

MAX249.pdf]

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 34 -

12 Schematic of the main board, PIC16F877, 2x PWM signals

12.1 The main board, photo and description

The main board consists of the µC and some of its periphery.

Picture 12-1, the main board

The power supply can be seen on the daughterboard on the lower left corner.

Some switches and leds are left to the µC. The µC itself is easily spotted in the

middle. The potis are to the right.

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 35 -

12.2 Schematics of the circuit of the main board

Picture 12-2, the µC

Picture 12-3, encoder, i2c, serial and analog interfaces

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 36 -

Picture 12-4, the ICD interface

Picture 12-5, leds and switches

Picture 12-6, oscillator

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 37 -

Picture 12-7, power supply

12.3 OPB704 light sensors

The OPB light sensors are used to detect the reflection of the light emitted by a

photodiode by a phototransistor to follow the white scotch tape.

Detection is not easy because the underground may vary. A carpet can be

quite easily detected; it almost reflects a light at all. The ground made of stone

is almost identical to the reflection of the white scotch tape.

Therefore a capability to teach in ground and scotch was added to the robot’s

µC to be able to drive on different surfaces without reprogramming. The

detection level, that means the level between, the analog values for ground

and scotch, can be set in software or stored in the µC’s eeprom. Currently the

detecting level is set at 1/3 of the different between scotch and ground. This

value has been gained from experience and usually works best.

When mounting the OPB704 sensors are oscilloscope is highly recommend to

adjust the high of the sensor and the angle, which should be 90° to the surface.

This adjustment can really make the difference when cruising around. When

adjusting, simply try to get the biggest difference in the input voltages of scotch

and ground possible. The software does the rest.

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 38 -

Picture 12-8, OPB704

Picture 12-9, OPB704

12.4 The battery

The battery is a 12V, 1.2Ah lead-acid one. It can be charged with a normal

power supply in approx. 14h why connecting it to 13V, 120mA. The current will

drop to 0A when finished. It is not allowed to change the battery type for the

competition. However, it is allowed to have as many of them in reserve as

wanted.

Picture 12-10, the battery

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 39 -

13 I2C bus of the pic 16F877

13.1 The I2C bus

The I2C bus (Inter-IC bus or I2C) is a bus used on circuits. It is not a fieldbus

like CAN or Interbus. Many IC, like LCDs, serial eeproms, remote i/0 ports or

ram have I2C interfaces. Philips alone manufactures more than 150 different

types of ICs with I2C connector.

It only needs to wires with a 1,7kΩ pull-up. The lines are SCL, Serial Clock

Line and SDA, Serial DAta line.

Picture 13-1, i2c bus example

For more information consult the I2C specification [18,

I2C_BUS_SPECIFICATION.pdf]

13.2 The compass and ultrasound distance sensor

IUT acquired a compass and an ultrasound distance sensor, both with I2C

interfaces, for better navigation of the robot. Perhaps care must be taken with

ultrasound detector during the competition because modern photos and

camcorders use ultrasound distance sensors for the autofocus.

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 40 -

14 Conclusion

The principal goal to develop software, electronics and conceptions for a

mobile robot was achieved. The robot is reliably following the white scotch tape

on almost any ground, including the floor seen on Picture 10-1.

In the competition, even tough ambient light level will be much higher; the robot

will have no problems, because the carpet reflects almost no light. But the light

detecting sensors should then be mounted inside the chassis and there height

should be regulated by a mechanical device, perhaps a spring.

Following students working on this projects will have to design at pcb

motherboard with connectors for sensors and µC boards so that development

can be split among several people (4 students will form a team for the

competition). This might then perhaps look like a today’s pc motherboard.

Perhaps not only one, but several µC can be used to perform different tasks.

One could be responsible for the two encoder channels, one for the light

sensors, one for coordination and communications, one to avoid collusions

with the second robot with the ultrasound sensors and some bumpers mounted

around the robot, another µC could be used for pwm signal generation. They

would then be able to share information and send commands by their on chip

I2C bus. This also makes cooperation between different students easier if well

defined interfaces are established.

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 41 -

15 References

[1] rules.pdf

[2] Base_roulante.pdf

[3, 16f84a.pdf]

[4, PIC16F62X manual]

[5, http://www.microchip.com]

[6, ex001.asm]

[7, ex002.asm]

[8, pwm001.asm]

[9, PIC16F87X manual]

[10, pwm_f877.asm]

[11, SGS-Thomson L6203 manual]

[12, PICC-manual.pdf]

[13, ICD.pdf]

[14, ICD-setup-poster.pdf]

[15, PIC midrange MCU family, midrange.pdf]

[16, servotogo, servo i/o card hardware manual]

[17, MAX220-MAX249.pdf]

[18, I2C_BUS_SPECIFICATION.pdf]

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 42 -

16 Index of tables and pictures

Picture 2-1, the course for the competition.. 4
Picture 2-2, Université Toulon-Var, east side .. 5
Picture 2-3, Toulon.. 5
Picture 2-4, La Garde.. 5
Picture 3-1, 16F84 on a prototype board... 8
Picture 4-1, showing a prototype with a 16F628 ... 9
Picture 5-1, AD block diagram on the PIC16F87X .. 11
Picture 5-2, PIC16F877 generating first dual pwm signals.............................. 12
Picture 6-1, motor electronics, top view... 13
Picture 6-2, motor electronics, bottom view... 14
Picture 6-3, schematic of the h-bridge and the µC inputs necessary 15
Picture 6-4, schematic of the motor electronics board..................................... 16
Picture 6-5, pwm signal explanation, voltage at the motor electronics inputs.. 17
Picture 7-1, ISIS screenshot.. 18
Picture 7-2, Ares screenshot ... 19
Picture 8-1, ICD’s main and option window... 21
Picture 8-2, node options dialog.. 22
Picture 8-3, Mplab’s main window... 22
Picture 8-4, language installation tool.. 24
Picture 9-1, the DB9 connector is the ICD interface.. 25
Picture 10-1, the robot on its course.. 27
Picture 10-2, close view of the robot cruising .. 27
Picture 10-3, motor with encoder discs ... 28
Picture 10-4, the encoder disc... 28
Picture 10-5, schematic of H21B... 28
Picture 10-6, commercial encoders... 30
Picture 10-7, signal examples ... 30
Picture 10-8, encoder circuit schematics... 31
Picture 11-1, schematic of serial port circuit.. 33
Picture 12-1, the main board ... 34
Picture 12-2, the µC .. 35
Picture 12-3, encoder, i2c, serial and analog interfaces.................................. 35
Picture 12-4, the ICD interface .. 36
Picture 12-5, leds and switches... 36
Picture 12-6, oscillator... 36
Picture 12-7, power supply.. 37
Picture 12-8, OPB704 ... 38
Picture 12-9, OPB704 ... 38
Picture 12-10, the battery .. 38
Picture 13-1, i2c bus example ... 39

Table 6-1, all possibilities of signals for the h-bridge, X -> don’t care.............. 15
Table 9-1, pinout of the ICD connection cable .. 26
Table 10-1, signal states ... 32
Table 17-1, French mnemonic for resistors... 43
Table 17-2, table of resistor colour codes ... 44

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 43 -

17 Annex

17.1 Resistors

0 1 2 3 4

Noir Brun Rouge Orange Jeune

Ne mangez rien ou jeunez

voila bien votre grosse bêtise

Vert Bleu Violet Gris Blanc

5 6 7 8 9

Table 17-1, French mnemonic for resistors

1 2 3 4

Development of software, electronics and conceptions for a mobile robot
Maximilian Heise

- 44 -

Colour Value Value *10 Multiplicator

*10Value

Tolerance

Black 0 0 0

Brown 1 1 1 1%

Red 2 2 2 2%

Orange 3 3 3

Yellow 4 4 4

Green 5 5 5 0,5%

Blue 6 6 6 0,25%

Gray 8 8 8

White 9 9 9

Gold -1 5%

Silver -2 10%

Nothing 20%

Table 17-2, table of resistor colour codes

	1 Table of Contents:
	2 Introduction
	2.1 Principal goal
	2.2 The mobile robots hardware
	2.3 Rules of the competition
	2.4 Université Toulon-Var, IUT, GEII
	2.5 Working Environment

	3 First steps with a PIC16F84 on a prototype board
	3.1 Programming asm on RISC architectures
	3.2 The first program

	4 PIC16F628 on a prototype board
	5 Generating two PWM signals on a PIC16F877
	5.1 FSR and INDF registers
	5.2 ADC conversion on the PIC16F877

	6 Motor electronics, H-bridge and PWM operation
	6.1 H-Bridge Operation
	6.2 PWM signal generation

	7 Working with Proteus, Isis and Ares
	7.1 Isis
	7.2 Ares

	8 Microchip IDE Mplab, PIC C compiler from Hi-Tech
	8.1 Problems with Mplab and the ICD
	8.2 Problems with HiTech’s PIC C compiler PICC
	8.3 Using the PICC

	9 ICD and ICD interface
	10 The robot crusing around
	10.1 Pictures of the robot following the scotch tape
	10.2 Quadrature Encoder Input
	10.3 Speed and position control
	10.4 Encoder signal circuit

	11 Serial port on the PIC 16F877
	11.1 The serial interface circuit

	12 Schematic of the main board, PIC16F877, 2x PWM signals
	12.1 The main board, photo and description
	12.2 Schematics of the circuit of the main board
	12.3 OPB704 light sensors
	12.4 The battery

	13 I2C bus of the pic 16F877
	13.1 The I2C bus
	13.2 The compass and ultrasound distance sensor

	14 Conclusion
	15 References
	16 Index of tables and pictures
	17 Annex
	17.1 Resistors

